
A Formal Analysis of Blockchain Consensus

Cosimo Laneve and Adele Veschetti

4th February 2020

3rd Distributed Ledger Technology Workshop (DLT 2020)

1

Our Analysis

• We model the Blockchain protocol with a variant of stochastic
pi calculus

• Channels have rates and these rates drive the dynamic

behaviour of processes

• All enabled activities attempt to proceed, but fastest ones

succeed with higher probabilities

• We define the behaviour of its key participants, the miners

• We derive the specification of the whole system as a parallel

composition of miners

• The properties of the blockchain protocol are derived by

studying the model of the stochastic pi calculus

• Later, we apply the same technique to analyze an attack to

Blockchain

3

The Ledger Data Type

A ledger, noted L, L′, · · · , is a pair (T, h) where

• T, noted by tree(L), is a nonempty tree of blocks

• h is an handle, noted by handle(L). It is always a pointer to a

leaf block at maximal depth.

The root of tree(L) is called genesis block.

G

b1

b2A b2B

G

b1

b2A b2B

b3A b3B b3A b3C

B3c

B4

In this paper we analyze the blockchain protocol by using a di↵erent tech-
nique from e.g. [2, 5, 4]. We model blockchain by means of a stochastic process
calculus. Therefore, we derive the properties of the blockchain protocol by study-
ing the states of the corresponding transition system.

In our technique puzzles are modelled as random oracles;
This modelling supports several proof techniques ranging from ... to simu-

lation. It also allows us a lot of flexibility, such as studying features separately,
and lets us understand in detail the contribution of each element in the overall
algorithm.

Our approach enables formally studying the robustness of the blockchain
protocol and supports both

In the static setting where all nodes remain fixed

2 The ledger datatype

A ledger, noted L, L0, · · · , is a pair (T, h) where T is a nonempty tree of blocks and
h is an handle; T will be noted by tree(L), h will be noted by handle(L). The root
of tree(L) is called genesis block. Every block B in tree(L) has a pointer to its
parent that is addressed by B.id; the set of blocks in L is addressed by L.blocks.
The handle handle(L) is always a pointer to a leaf block at maximal depth. The
following picture illustrates two ledgers – L1 and L2 where the handles are blue
pointers.

G

B1

B2a B2b

G

B1

B2a B2b

B3a B3b B3a B3c

the ledger L2 — L2↑ = [B3c,B2b,B1,G]the ledger L1 — L1↑ = [B3a,B2a,B1,G]

The blockchain of L, noted L ", is the sequence [B0, B1, B2, · · ·] such that
B0 = handle(L) and, for every i, Bi+1 is the parent of Bi (therefore the last
block is the genesis block).

the ledger L1 – L1 "= [b3A, b2A, b1, G]

the ledger L2 – L2 "= [b3C , b2B , b1, G]

The operation addBlock(L, B) returns a ledger where B is connected to the block
pointed by B.id. We notice that the handle of addBlock(L, B) is equal to the

2

In this paper we analyze the blockchain protocol by using a di↵erent tech-
nique from e.g. [2, 5, 4]. We model blockchain by means of a stochastic process
calculus. Therefore, we derive the properties of the blockchain protocol by study-
ing the states of the corresponding transition system.

In our technique puzzles are modelled as random oracles;
This modelling supports several proof techniques ranging from ... to simu-

lation. It also allows us a lot of flexibility, such as studying features separately,
and lets us understand in detail the contribution of each element in the overall
algorithm.

Our approach enables formally studying the robustness of the blockchain
protocol and supports both

In the static setting where all nodes remain fixed

2 The ledger datatype

A ledger, noted L, L0, · · · , is a pair (T, h) where T is a nonempty tree of blocks and
h is an handle; T will be noted by tree(L), h will be noted by handle(L). The root
of tree(L) is called genesis block. Every block B in tree(L) has a pointer to its
parent that is addressed by B.id; the set of blocks in L is addressed by L.blocks.
The handle handle(L) is always a pointer to a leaf block at maximal depth. The
following picture illustrates two ledgers – L1 and L2 where the handles are blue
pointers.

G

B1

B2a B2b

G

B1

B2a B2b

B3a B3b B3a B3c

the ledger L2 — L2↑ = [B3c,B2b,B1,G]the ledger L1 — L1↑ = [B3a,B2a,B1,G]

The blockchain of L, noted L ", is the sequence [B0, B1, B2, · · ·] such that
B0 = handle(L) and, for every i, Bi+1 is the parent of Bi (therefore the last
block is the genesis block).

the ledger L1 – L1 "= [b3A, b2A, b1, G]

the ledger L2 – L2 "= [b3C , b2B , b1, G]

The operation addBlock(L, B) returns a ledger where B is connected to the block
pointed by B.id. We notice that the handle of addBlock(L, B) is equal to the

2

G

b1

b2A b2B

b3A b3B

G

b1

b2A b2B

b3A b3B

In this paper we analyze the blockchain protocol by using a di↵erent tech-
nique from e.g. [2, 5, 4]. We model blockchain by means of a stochastic process
calculus. Therefore, we derive the properties of the blockchain protocol by study-
ing the states of the corresponding transition system.

In our technique puzzles are modelled as random oracles;

This modelling supports several proof techniques ranging from ... to simu-
lation. It also allows us a lot of flexibility, such as studying features separately,
and lets us understand in detail the contribution of each element in the overall
algorithm.

Our approach enables formally studying the robustness of the blockchain
protocol and supports both

In the static setting where all nodes remain fixed

2 The ledger datatype

A ledger, noted L, L0, · · · , is a pair (T, h) where T is a nonempty tree of blocks and
h is an handle; T will be noted by tree(L), h will be noted by handle(L). The root
of tree(L) is called genesis block. Every block B in tree(L) has a pointer to its
parent that is addressed by B.id; the set of blocks in L is addressed by L.blocks.
The handle handle(L) is always a pointer to a leaf block at maximal depth. The
following picture illustrates two ledgers – L1 and L2 where the handles are blue
pointers.

G

B1

B2a B2b

G

B1

B2a B2b

B3a B3b B3a B3c

the ledger L2 — L2↑ = [B3c,B2b,B1,G]the ledger L1 — L1↑ = [B3a,B2a,B1,G]

The blockchain of L, noted L ", is the sequence [B0, B1, B2, · · ·] such that
B0 = handle(L) and, for every i, Bi+1 is the parent of Bi (therefore the last
block is the genesis block). The operation addBlock(L, B) returns a ledger where
B is connected to the block pointed by B.id. We notice that the handle of
addBlock(L, B) is equal to the handle of L if the new block has not changed
the maximal depth of the tree; it is a pointer to B if this block has a depth
strictly larger than the maximal one of L. For example, let b3C.id be a pointer
to b2B and b4.id be a pointer to b3B ; then the following pictures illustrate
addBlock(L1, b3C) and addBlock(L1, b4):

2

In this paper we analyze the blockchain protocol by using a di↵erent tech-
nique from e.g. [2, 5, 4]. We model blockchain by means of a stochastic process
calculus. Therefore, we derive the properties of the blockchain protocol by study-
ing the states of the corresponding transition system.

In our technique puzzles are modelled as random oracles;

This modelling supports several proof techniques ranging from ... to simu-
lation. It also allows us a lot of flexibility, such as studying features separately,
and lets us understand in detail the contribution of each element in the overall
algorithm.

Our approach enables formally studying the robustness of the blockchain
protocol and supports both

In the static setting where all nodes remain fixed

2 The ledger datatype

A ledger, noted L, L0, · · · , is a pair (T, h) where T is a nonempty tree of blocks and
h is an handle; T will be noted by tree(L), h will be noted by handle(L). The root
of tree(L) is called genesis block. Every block B in tree(L) has a pointer to its
parent that is addressed by B.id; the set of blocks in L is addressed by L.blocks.
The handle handle(L) is always a pointer to a leaf block at maximal depth. The
following picture illustrates two ledgers – L1 and L2 where the handles are blue
pointers.

G

B1

B2a B2b

G

B1

B2a B2b

B3a B3b B3a B3c

the ledger L2 — L2↑ = [B3c,B2b,B1,G]the ledger L1 — L1↑ = [B3a,B2a,B1,G]

The blockchain of L, noted L ", is the sequence [B0, B1, B2, · · ·] such that
B0 = handle(L) and, for every i, Bi+1 is the parent of Bi (therefore the last
block is the genesis block). The operation addBlock(L, B) returns a ledger where
B is connected to the block pointed by B.id. We notice that the handle of
addBlock(L, B) is equal to the handle of L if the new block has not changed
the maximal depth of the tree; it is a pointer to B if this block has a depth
strictly larger than the maximal one of L. For example, let b3C.id be a pointer
to b2B and b4.id be a pointer to b3B ; then the following pictures illustrate
addBlock(L1, b3C) and addBlock(L1, b4):

2

The blockchain of L, noted L ↑, is the sequence [b0, b1, b2, · · ·]
such that b0 = handle(L) and, for every i , bi+1 is the parent of bi . 4

The abstract model of Blockchain

The key participants of the protocols are the miners that create

blocks of the ledger and broadcast them to the nodes of the

network. In our model a blockchain system is

(νz1@r1, · · · , zn@rn)
(∏

zi∈{z1,··· ,zn}

Miner{z1,··· ,zn}\z(G,∅, zi)
)

where G is the ledger with the genesis block only.

5

How we model it

• The system consists of n miners

• They communicate through channels z1, · · · , zn with rates

r1, · · · , rn,

Formally, the definition of a MinerU is

MinerU(L,X , z) = (ν w@rw)
((

z?(b). MinerU(L,Xab, z)

+ w!newBlock(L)

+ if (X = ε) then τr′ . MinerU(L,X , z)

else if (head(X).id ∈ L.blocks) then

τr′ .MinerU(addBlock(L, head(X)), tail(X), z)

else τr′ . MinerU(L, tail(X)ahead(X), z))
| w?(b).(MinerU(addBlock(L, b),X , z) |

∏
z′∈U z ′!(b)))

6

Properties

Definition
A state of a blockchain system is called completed when it is

structurally equivalent

(ν z1@r1, · · · , zn@rn)
(∏

i∈1..n Miner(Bi , ε, zi)
)
.

Namely, in a completed state, there is no block to deliver and the

blocks in the local lists Xi have been already inserted in the

corresponding ledgers.

8

Theorem
Let P be a completed state of a blockchain system consisting of n

miners with ledgers B1, . . . ,Bn, respectively.

Let B1 and Bk+1 have fork of length m. Then the probability
Prob(P m+1) to reach a completed state with fork of length
m + 1 is smaller than

∑
i,`,j

Θ(i , `, j),where


1 ≤ i ≤ n

H ⊂ {1, · · · , n} \ i , ` = |H|
i ≤ k ⇒ j ∈ {k + 1, · · · , n} \ H
i > k ⇒ j ∈ {1, · · · , k} \ H

where

Θ(i , `, j) =
rwi rwj

R (R + (n − 1− `)r)

∏
1≤h≤`

h r

R + (n − h)r

∏
1≤a≤2n−2−`

a r

R + a r

9

1. rwi represents the time i−th node needs to solve the block

problem:

rwi =
hi
D
, ∀i ∈ {1, . . . , n}

2. In the blockchain protocol the messages incur in a

propagation delay, represented by ri

10

Analysis of Possible Attacks

• We model the scenario in which a hostile miner tries to create

an alternate chain faster than the honest one

• The difference with MinerU is that the dishonest miner, called

MinerDU , mines on a block d that is not the correct one

• We use the operation newBlockD(L, d) that takes a ledger L

and a block d ∈ L.blocks and returns a new block whose

pointer is d (therefore it will be connected to d).

11

Model of an attacker

The definition of MinerDU is

MinerDU(L,X , z , d) =

(ν w@r)
((

z?(b). MinerDU(L,Xab, z , d)

+ w!newBlockD(L, d)

+ if (X = ε) then τr′ . MinerDU(L,X , z , d)

else if (head(X).id ∈ L.blocks) then

τr′ .MinerDU(addBlock(L, head(X)), tail(X), z , d)

else τr′ . MinerDU(L, tail(X)ahead(X), z , d))
| w?(b).(MinerDU(addBlock(L, b),X , z , b) |

∏
z′∈U z ′!(b)))

12

Theorem
Let P be a completed state of a blockchain system of n miners
with exactly one that is hostile and let hd its hashing power. The
probability Prob(Pz) to reach a completed state where the hostile
miner has created an alternate chain longer than the honest one
from z , z ≥ 1, blocks behind is smaller than

+∞∑
k

[(
hd

n−1∏
i=1

i r

R + (n − i)r

)k(n−1∑
j=1

hj

n−1∏
h=1

h r

R + (n − i)r

)k−1]z
≤
(hd

1− hd

)z

13

Conclusions

• We model the blockchain consensus protocol with a stochastic

pi calculus

• Properties are derived by studying the transition system

• We computed the probability of devolving into a larger

inconsistency and of a successfull attack

• It is possible to conform our upper bounds for both Bitcoin

and Ethereum protocols, with instantiating the formula with

the rate-values of the two systems

• We are currently extending a stochastic analyzer with the

ledger datatype for experimenting in silico the dynamics of our

specifications

14

