A Formal Analysis of Blockchain Consensus

Cosimo Laneve and Adele Veschetti

4th February 2020

3rd Distributed Ledger Technology Workshop (DLT 2020)

Our Analysis

- We model the Blockchain protocol with a variant of stochastic pi calculus
 - Channels have rates and these rates drive the dynamic behaviour of processes
 - All enabled activities attempt to proceed, but fastest ones succeed with higher probabilities
- We define the behaviour of its key participants, the miners
- We derive the specification of the whole system as a parallel composition of miners
- The properties of the blockchain protocol are derived by studying the model of the stochastic pi calculus
- Later, we apply the same technique to analyze an attack to Blockchain

The Ledger Data Type

A ledger, noted L, L', \cdots , is a pair (T,h) where

- T, noted by tree(L), is a nonempty tree of blocks
- h is an handle, noted by handle(L). It is always a pointer to a leaf block at maximal depth.

The root of tree(L) is called *genesis block*.

The blockchain of L, noted L \uparrow , is the sequence $[b_0, b_1, b_2, \cdots]$ such that $b_0 = handle(L)$ and, for every i, b_{i+1} is the parent of b_i .

The abstract model of Blockchain

The key participants of the protocols are the *miners* that create blocks of the ledger and broadcast them to the nodes of the network. In our model a blockchain system is

$$(\nu z_1@r_1,\cdots,z_n@r_n)\Big(\prod_{z_i\in\{z_1,\cdots,z_n\}}\mathsf{Miner}_{\{z_1,\cdots,z_n\}\setminus z}(\mathtt{G},\varnothing,z_i)\Big)$$

where G is the ledger with the genesis block only.

How we model it

- The system consists of *n* miners
- \bullet They communicate through channels z_1,\cdots,z_n with rates

```
r_1, \cdots, r_n
```

Formally, the definition of a Miner $_U$ is

```
\begin{aligned} \mathsf{Miner}_{\mathcal{U}}(L,X,z) &= (\nu \ w@r_w) \big( \\ &\quad \big( \ z?(b). \ \mathsf{Miner}_{\mathcal{U}}(L,X^{\smallfrown}b,z) \\ &\quad + \ w \,! \, newBlock(L) \\ &\quad + \ \mathsf{if} \ (X=\varepsilon) \ \mathsf{then} \ \tau_{r'}. \ \mathsf{Miner}_{\mathcal{U}}(L,X,z) \\ &\quad \mathsf{else} \ \mathsf{if} \ \big( head(X). \ \mathsf{id} \in L. \, \mathsf{blocks} \big) \ \mathsf{then} \\ &\quad \tau_{r'}. \, \mathsf{Miner}_{\mathcal{U}} \big( addBlock(L, head(X)), \, tail(X), z \big) \\ &\quad \mathsf{else} \ \tau_{r'}. \ \mathsf{Miner}_{\mathcal{U}} \big( L, \, tail(X)^{\smallfrown} head(X), z \big) \\ &\quad \big) \mid \ w?(b). \big( \mathsf{Miner}_{\mathcal{U}} \big( addBlock(L,b), X,z \big) \mid \prod_{z' \in \mathcal{U}} z' \,! \, (b) \big) \\ &\quad \big) \end{aligned}
```

Properties

Definition

A state of a blockchain system is called *completed* when it is structurally equivalent

$$(\nu z_1@r_1,\cdots,z_n@r_n)\Big(\prod_{i\in 1..n}\mathsf{Miner}(B_i,\varepsilon,z_i)\Big)$$
.

Namely, in a completed state, there is no block to deliver and the blocks in the local lists X_i have been already inserted in the corresponding ledgers.

Theorem

Let P be a completed state of a blockchain system consisting of n miners with ledgers B_1, \ldots, B_n , respectively.

Let B_1 and B_{k+1} have fork of length m. Then the probability $Prob(P_{\leadsto m+1})$ to reach a completed state with fork of length m+1 is smaller than

$$\sum_{i,\ell,j} \Theta(i,\ell,j), \textit{where} \begin{cases} 1 \leq i \leq n \\ H \subset \{1,\cdots,n\} \setminus i, \, \ell = |H| \\ i \leq k \ \Rightarrow \ j \in \{k+1,\cdots,n\} \setminus H \\ i > k \ \Rightarrow \ j \in \{1,\cdots,k\} \setminus H \end{cases}$$

where

$$\Theta(i,\ell,j) = \frac{r_{w_i} \ r_{w_j}}{R \ (R + (n-1-\ell)r)} \ \prod_{1 \le h \le \ell} \frac{h \ r}{R + (n-h)r} \prod_{1 \le a \le 2n-2-\ell} \frac{a \ r}{R + a \ r}$$

1. r_{w_i} represents the time i—th node needs to solve the block problem:

$$r_{w_i} = \frac{h_i}{D}, \forall i \in \{1, \dots, n\}$$

2. In the blockchain protocol the messages incur in a propagation delay, represented by r_i

Analysis of Possible Attacks

- We model the scenario in which a hostile miner tries to create an alternate chain faster than the honest one
- The difference with Miner_U is that the dishonest miner, called Miner^D_U, mines on a block d that is not the correct one
- We use the operation $newBlock^D(L, d)$ that takes a ledger L and a block $d \in L.blocks$ and returns a new block whose pointer is d (therefore it will be connected to d).

Model of an attacker

The definition of Miner^D $_U$ is

```
\begin{split} \operatorname{\mathsf{Miner}^D}_U(L,X,z,d) &= \\ &(\nu \ w@r) \big( \quad \big( \ z?(b). \ \operatorname{\mathsf{Miner}^D}_U(L,X^\smallfrown b,z,d) \\ &+ \ w! \ \operatorname{\mathsf{newBlock}^D}(L,d) \\ &+ \ \operatorname{\mathsf{if}} \ (X=\varepsilon) \ \operatorname{\mathsf{then}} \ \tau_{r'}. \ \operatorname{\mathsf{Miner}^D}_U(L,X,z,d) \\ &= \operatorname{\mathsf{else}} \ \operatorname{\mathsf{if}} \ (\operatorname{\mathsf{head}}(X). \ \operatorname{\mathsf{id}} \in L. \operatorname{\mathsf{blocks}}) \ \operatorname{\mathsf{then}} \\ &\quad \tau_{r'}. \operatorname{\mathsf{Miner}^D}_U(\operatorname{\mathsf{addBlock}}(L,\operatorname{\mathsf{head}}(X)), \operatorname{\mathsf{tail}}(X),z,d) \\ &= \operatorname{\mathsf{else}} \ \tau_{r'}. \ \operatorname{\mathsf{Miner}^D}_U(L,\operatorname{\mathsf{tail}}(X)^\smallfrown \operatorname{\mathsf{head}}(X),z,d) \\ &\quad \big) \ | \ \ w?(b). (\operatorname{\mathsf{Miner}^D}_U(\operatorname{\mathsf{addBlock}}(L,b),X,z,b) \ | \ \prod_{z' \in U} z'!(b)) \\ \big) \end{split}
```

Theorem

Let P be a completed state of a blockchain system of n miners with exactly one that is hostile and let h_d its hashing power. The probability $\operatorname{Prob}(P_z)$ to reach a completed state where the hostile miner has created an alternate chain longer than the honest one from $z, z \geq 1$, blocks behind is smaller than

$$\sum_{k}^{+\infty} \left[\left(h_d \prod_{i=1}^{n-1} \frac{i \ r}{R + (n-i)r} \right)^k \left(\sum_{j=1}^{n-1} h_j \prod_{h=1}^{n-1} \frac{h \ r}{R + (n-i)r} \right)^{k-1} \right]^z \le \left(\frac{h_d}{1 - h_d} \right)^z$$

Conclusions

- We model the blockchain consensus protocol with a stochastic pi calculus
- Properties are derived by studying the transition system
- We computed the probability of devolving into a larger inconsistency and of a successfull attack
- It is possible to conform our upper bounds for both Bitcoin and Ethereum protocols, with instantiating the formula with the rate-values of the two systems
- We are currently extending a stochastic analyzer with the ledger datatype for experimenting in silico the dynamics of our specifications